270 research outputs found

    Robot Learning-Based Pipeline for Autonomous Reshaping of a Deformable Linear Object in Cluttered Backgrounds

    Get PDF
    open2noThis work was supported in part by the European Union’s Horizon 2020 Research and Innovation Program as part of RIA Project Robotic tEchnologies for the Manipulation of cOmplex DeformablE Linear objects (REMODEL) under Grant 870133.In this work, the robotic manipulation of a highly Deformable Linear Object (DLO) is addressed by means of a sequence of pick-and-drop primitives driven by visual data. A decision making process learns the optimal grasping location exploiting deep Q-learning and finds the best releasing point from a path representation of the DLO shape. The system effectively combines a state-of-the-art algorithm for semantic segmentation specifically designed for DLOs with deep reinforcement learning. Experimental results show that our system is capable to manipulate a DLO into a variety of different shapes in few steps. The intermediate steps of deformation that lead the object from its initial configuration to the target one are also provided and analyzed.openZanella R.; Palli G.Zanella R.; Palli G

    Output-Based Control of Robots with Variable Stiffness Actuation

    Get PDF
    The output-based control of a redundant robotic manipulator with relevant and adjustable joint stiffness is addressed. The proposed controller is configured as a cascade system that allows the decoupling of the actuators dynamics from the arm dynamics and the consequent reduction of the order of the manipulator dynamic model. Moreover, the proposed controller does not require the knowledge of the whole robot state: only the positions of the actuators and of the joints are necessary. This approach represents a significant simplification with respect to previously proposed state feedback techniques. The problem of controlling simultaneously the position trajectory and the desired stiffness in both the joint and work space is investigated, and the relations between the manipulator redundancy and the selection of both the joint and work space stiffness of the manipulator are discussed. The effectiveness of the proposed approach is verified by simulations of a 3 degrees of freedom planar manipulator

    Microcontrollori e DSP

    Get PDF

    Controllori Real Time

    Get PDF

    Programmable Logic Controllers

    Get PDF

    Sistemi Real Time

    Get PDF

    Reti Informatiche in Automazione

    Get PDF

    Introduzione al Corso 2015

    Get PDF

    Cable Detection and Manipulation for DLO-in-Hole Assembly Tasks

    Get PDF
    This paper describes a cyber-physical system for the manipulation of Deformable Linear Objects (DLOs) addressing the DLO-in-hole insertion problem targeting an industrial sce-nario, the switchgear's components cabling task. In particular, the task considered is the insertion of DLOs in the switchgear components' holes. This task is very challenging since a precise knowledge of the DLO tip position and orientation is required for a successful operation. We tackled the DLO-in-hole problem from the computer vision perspective constraining our setup on employing just simple 2D images and by using the mobility of the robotic arm for achieving the full 3D knowledge of the DLOs. Then, the DLO tip is detected from two different image planes and the robot's trajectory corrected accordingly before insertion. To prove the effectiveness of the proposed solution, an example scenario is prepared and the method validated experimentally attempting the insertion of several DLOs in a sample switchgear component, obtaining an overall insertion success rate of 82.5 %
    • …
    corecore